15 research outputs found

    Collapsible Pushdown Graphs of Level 2 are Tree-Automatic

    Get PDF
    We show that graphs generated by collapsible pushdown systems of level 2 are tree-automatic. Even when we allow ϵ\epsilon-contractions and add a reachability predicate (with regular constraints) for pairs of configurations, the structures remain tree-automatic. Hence, their FO theories are decidable, even when expanded by a reachability predicate. As a corollary, we obtain the tree-automaticity of the second level of the Caucal-hierarchy.Comment: 12 pages Accepted for STACS 201

    Tree-Automatic Well-Founded Trees

    Get PDF
    We investigate tree-automatic well-founded trees. Using Delhomme's decomposition technique for tree-automatic structures, we show that the (ordinal) rank of a tree-automatic well-founded tree is strictly below omega^omega. Moreover, we make a step towards proving that the ranks of tree-automatic well-founded partial orders are bounded by omega^omega^omega: we prove this bound for what we call upwards linear partial orders. As an application of our result, we show that the isomorphism problem for tree-automatic well-founded trees is complete for level Delta^0_{omega^omega} of the hyperarithmetical hierarchy with respect to Turing-reductions.Comment: Will appear in Logical Methods of Computer Scienc

    Collapsible Pushdown Graphs of Level 2 are Tree-Automatic

    Full text link

    First-Order Model Checking on Generalisations of Pushdown Graphs

    Get PDF
    We study the first-order model checking problem on two generalisations of pushdown graphs. The first class is the class of nested pushdown trees. The other is the class of collapsible pushdown graphs. Our main results are the following. First-order logic with reachability is uniformly decidable on nested pushdown trees. Considering first-order logic without reachability, we prove decidability in doubly exponential alternating time with linearly many alternations. First-order logic with regular reachability predicates is uniformly decidable on level 2 collapsible pushdown graphs. Moreover, nested pushdown trees are first-order interpretable in collapsible pushdown graphs of level 2. This interpretation can be extended to an interpretation of the class of higher-order nested pushdown trees in the collapsible pushdown graph hierarchy. We prove that the second level of this new hierarchy of nested trees has decidable first-order model checking. Our decidability result for collapsible pushdown graph relies on the fact that level 2 collapsible pushdown graphs are uniform tree-automatic. Our last result concerns tree-automatic structures in general. We prove that first-order logic extended by Ramsey quantifiers is decidable on all tree-automatic structures.Comment: phd thesis, 255 page

    Collapsible Pushdown Automata and Recursion Schemes

    Get PDF
    International audienceWe consider recursion schemes (not assumed to be homogeneously typed, and hence not necessarily safe) and use them as generators of (possibly infinite) ranked trees. A recursion scheme is essentially a finite typed {deterministic term} rewriting system that generates, when one applies the rewriting rules ad infinitum, an infinite tree, called its value tree. A fundamental question is to provide an equivalent description of the trees generated by recursion schemes by a class of machines. In this paper we answer this open question by introducing collapsible pushdown automata (CPDA), which are an extension of deterministic (higher-order) pushdown automata. A CPDA generates a tree as follows. One considers its transition graph, unfolds it and contracts its silent transitions, which leads to an infinite tree which is finally node labelled thanks to a map from the set of control states of the CPDA to a ranked alphabet. Our contribution is to prove that these two models, higher-order recursion schemes and collapsible pushdown automata, are equi-expressive for generating infinite ranked trees. This is achieved by giving an effective transformations in both directions

    A pumping lemma for collapsible pushdown graphs of level 2

    Get PDF
    We present a pumping lemma for the class of collapsible pushdown graphs of level 2. This pumping lemma even applies to the ε-contractions of level 2 collapsible pushdown graphs. Our pumping lemma also improves the bounds of Hayashi’s pumping lemma for indexed languages
    corecore